pages.product-details-page.thumbnail
Acid tolerance of streptococcus mutans biofilms
Malmö universitet

Acid tolerance of streptococcus mutans biofilms

By Jessica Neilands
Dentistry
118 pages • English • 2007

About the book

In nature, bacteria are organized in surface-associated biofilm communities. Dental plaque is one of the most studied biofilms and harbours many different species including the star of this thesis Streptococcus mutans. S. mutans has been implicated in the aetiology of caries and has been studied extensively but most research has been carried out on liquid cultures (planktonic cells). Biofilm cells have been shown to differ in many ways from planktonic cells when it comes to protein and gene expression, growth rate, and stress tolerance. The overall aim of this thesis was to study S. mutans grown in biofilms of different ages (2 hours – 3 days) and to study the acid tolerance response (ATR) in biofilm cells. Biofilms were grown in chemostats, on glass slides and in flow-cell systems. To evaluate protein expression in cells, 14C-labelled proteins were separated by 2-dimensional gel eletrophoresis (2-DE) followed by autoradiography and computer-assisted image analysis. Acid killing experiments were conducted by exposing the cells to pH 3.0 for two hours and then counting the number of survivors by plating on blood agar. ATR-experiments were carried out in a similar way to the acid killing experiments except that the cells were first exposed to pH 5.5 for 2-3 hours and then exposed to pH 3.0-3.5 for 30 minutes to two hours. Surviving cells were counted by plating on blood agar but also examined using LIVE/DEAD® BacLightTM viability stain. Inhibition of the cell’s ability to induce an ATR was tested by exposing the cells to 0.5 M fluoride. Mature biofilm cells (3 days old) showed a different protein expression pattern compared to corresponding planktonic cells with the most prominent difference being the decreased expression of enzymes involved in carbohydrate catabolism. Contact with a surface induced changes in protein expression as quickly as two hours after surface adhesion. In these cells however, the proteins involved in carbohydrate catabolism were enhanced. Surface contact and growth in a biofilm lead to increased acid tolerance. In newly formed biofilm cells of S. mutans H7, 5% of the cells survived an acid shock of pH 3.0 for two hours compared to only 0.0004% of the planktonic cells. The mature biofilm cells were even more acid tolerant with 41.5% survivors after two hours at pH 3.0. Mature biofilms induced only a negligible ATR that did not enhance their survival significantly. Still, 20% of the proteins analysed had an altered expression after exposure to pH 5.5. In newly formed biofilm cells the ATR lead to decreased membrane damage at low pH as visualised by LIVE/DEAD® BacLightTM staining. Different strains showed different abilities to induce an ATR and it was also shown that this ATR could be inhibited by exposure to 0.5 M fluo-ride during the pH 5.5-adaptation period. The results of the thesis show that biofilm cells of S. mutans differ from their planktonic counterparts and the strains of S. mutans tested behave somewhat differently.

Contributors

Author

Jessica Neilands

Editions

Acid tolerance of streptococcus mutans biofilms
Pages
118
Measurements
159.98 mm ✕ 240.04 mm
ISBN
9789171042941
Weight
279 g
Delivery time: 5-7 workdays within Sweden, rest of the world up to 14 workdays